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Introduction
For our final project, our goal was to design and build an SoC in SystemVerilog capable
of replicating a subset of features of the NES. The NES (Nintendo Entertainment
System) is an 8-bit video game console created by Nintendo in 1983. The standard NES
CPU core is based on a 6502 processor, with modifications that made it consumer ready
for such an SoC - the biggest addition being an APU (audio processing unit). Using an
open source  IP of this core, we hoped to write SystemVerilog that could model and
synthesize some of the behaviors of what was a historically remarkable console. In
particular, we planned to make a system capable of running NES ROMs, accepting
input via a keyboard, and (ideally) being able to scroll.

NES/Famicom Game System

Much of the NES design has been well-documented by enthusiasts - after rigorous
testing by enthusiasts, there are detailed explanations of its internal architecture, down
to the internal bugs. However, making a one-to-one copy of such a system was infeasible
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in such a small amount of time, especially while in other technical coursework. Thus,
our project centers on replicating minimal behavior to emulate launch NES titles, the
most famous of these being Donkey Kong and Super Mario Bros.

Furthermore, to comply with the hardware limitations and capabilities of the DE-10
lite, our logic adapts the NES’s rendering to a VGA timing/output specification rather
than directly generating composite signals and making intermediary logic. Though this
will inevitably cause some issues with getting games to look perfect, it is one of the
compromises we needed to make.

Written Description
Interaction
Note that this project does not simply emulate a game, but emulates the hardware used
in an NES. As such, there is, by default, no code loaded onto our SoC. The user must
find an appropriate game ROM to run - however to streamline this process, we have
provided a python script (nes-hex.py) to convert  games from the standardized iNES
format to CHR-ROM and PRG-ROM blocks - we’ll elaborate what these are going
forward - stored in an MIF format that can be flashed to the DE-10 Lite’s onboard M9K
RAM blocks. Anyway, once one generates these initialization files and flashes the FPGA
accordingly, they can interact with NaES using a standard keyboard, which is internally
converted to the NES controller interface, and view the game on a VGA output at
512x480 resolution. The default bindings are WASD for directional keys, TY for
Select/Start, and GH for AB. The current build (at the time of writing) supports 3-key
rollover for this player, though the release on GitHub should support a second player
using the right half of the keyboard, and 8-key rollover for both players combined.
When flashed, the FPGA should automatically start the game of choice. Key0 has been
internally routed as a reset signal for the system, should it be necessary - though note
that this signal only resets program state and registers, and not the internal RAM. This
may cause some unexpected behavior, but these can be avoided by re-flashing the FPGA
to achieve start-up state rather than using this “hot reload”.



Internal Structure
As mentioned in the introduction, this system, even at the diluted level that we
produced, involves a high level of complexity, with many different behaviors that build
off of each other. Thus, we chose to approach this project with an approach similar to
those LEGO Bionicle models - start from a simple core, and attach more and more
pieces branching outwards. In this case, our core was the CPU that we found online
(we’ll talk about this soon).  We also abstracted away and modularized our system as
much as possible, dedicated one module for each isolated behavior. As such, this
description will be structured according to that abstraction. In our initial proposal, we
created a block diagram depicting what we expected the completed SOC to look like,
though as we’ll see in the report going forward, some of these hierarchies have been
reworked or elaborated as necessary.

Simplified Block Diagram



CPU
The original NES operated off of a modified 8-bit 6502 processor core (representative of
computing standards at the time), but due to the scope/time constraints of this
assignment, it did not make sense for us to reimplement such a CPU - such an
assignment could in fact constitute its own final project.

As such, we’ve opted to use a readily available Verilog IP that was produced by
OpenCores, and later modified/debugged by the MisTer NES Project. However, the
current iteration of this project implements some extra behaviors in the CPU that make
our simplified implementation more complex, as such we’ve opted to use an older
version which is archived here. It supports all of the basic behaviors we require.

For the sake of our project we can reduce the CPU interface to a couple of key ports
(outside of configuration):

● Enable - used to pause the CPU for batch data transfers
● NMI - used to initiate an non-maskable interrupt

● W/R - active-low Write
● ADDR - Bus I/O Address
● DATA_IN - Bus read data
● DATA_OUT - Bus write data (driver)

As this documentation progresses, some of these signals - especially the non-bus signals -
will be used to enable and control key behaviors by the rest of the SoC, especially the
PPU (picture processing unit).

CPU Data Interfacing and Directly Interfaced Storage Elements

https://drive.google.com/drive/folders/16r2IWTGa57ZsSyK9zto2cGAUQcQ55nkw


The CPU, as in most SoCs, interacts with the rest of the system through a primary data
bus via a 16-bit addressing system and 8-bit in/out communication - the connections to
which have been depicted below.

For sake of simplicity, our primary data bus was done using purely combinational logic.
We connected a unified bus_out output to every element’s data input, and (due to a lack
of tri-state buffers), used a series of if-else statements to synthesize a priority mux to
determine the data input driving the bus. For write operations by the CPU, the driver
was always the CPU’s DATA_OUT, but for read operations, we needed some kind of
abstraction for element addressing.

The bus abstracts CPU memory/element accesses using the following memory map:

x0000-x07FF SYSRAM

(Addresses mirrored until x1FFF)

x2000 - x2007 PPU Interface

(mirrored until x3FFF)

x4014 DMA Trigger

x4016/x4017 Controllers

x6000-x7FFF Save RAM

x8000-xFFFF PRG ROM

Most of these elements - at least in comparison to the rest of the system - require little
architectural complexity, and should be quickly reviewed before proceeding. However, it
should be noted that the main exceptions to this are the Save RAM and PPU. The PPU
is an extremely complex component, which will have its own section later. Again due to
the time constraints, the Save RAM was not implemented in this simplified console.



Though it should be noted that the games we used as benchmarks to test our progress -
namely Donkey Kong and Super Mario Bros. - do not make use of this.

Program ROM
An iNES ROM can be decomposed into its PRG ROM and CHR ROM components -
PRG ROM is where all the CPU instructions for the game are stored. It is sized to be
32KB (two 16KB banks) of M9K read-only SRAM.

It should be noted that games can potentially use less or more memory than this. Since
this was one of the first components we ironed out in the system, we were not sure if
we’d be able to afford potentially “burning” valuable M9K space on extra memory, and
as such have ignored games that take advantage of memory-mappers to increase the
number of memory banks that can be mapped to the 16KB regions in PRG ROM. In
the case of a game using only one 16KB bank, we simply clone it across the 32KB span.

System RAM
This is the main operating memory of the SoC.  It is sized to 2 KB’s worth of single-port
M9K SRAM, and has read/write access from the CPU.

Controller(s)
In the original NES, the controller would connect via a pinout that looks like the
following:



And latched data would be shifted out over a span of 8 reads (one per button). We
required some way to emulate this behavior using a viable source of input - though the
onboard switches/buttons could be used, it’d be very impractical to play games.

Instead, though a bit overkill in the grand scheme of things, we instantiated a modified
version of the NIOS IIe SoC created in Lab 6, and used it to read keycodes from the
MAX3241E chip via an SPI interface. It isn’t exactly practical to play games with only
one keystroke being read at a time, so we modified the driver code and PIOs on the
system to accept 3 keycodes at a time, and output them to 3 different 8-bit PIO outputs
on the platform bus.

These outputs were then passed into a submodule dedicated to controller parsing. At
any given time, this submodule’s combinational logic generated a potential 8-bit output
sequence by validating and positioning each of the keycodes in the output sequence.
When the bus indicates a write to this submodule, this composite is latched into an 8-bit
shift register.  For each of the next 8 reads from the bus, the most-significant bit is
shifted into a read buffer that drives the bus output - this is done on the positive edge of
control1_en&&READ , where control1_en indicates the bus “selecting” the controller
for R/W operation.

Despite being rather simple to implement, the controller gave us a bit of trouble during
design, primarily due to the strict timing requirements of the NES system, and an
obvious lack of people piping NIOS II PIOs into their virtual NES bus. There was
various experimentation done with directly wiring the shift-out to the bus, different
update conditions, etc.

Clock Domains



As is common in complex SoCs, there are multiple clock domains in use. The original
NES used 4 clock domains - a 1.7MHz CPU clock, a 5.369MHz PPU Clock, a 12MHz
RAM clock, and 21MHz master clock used for output timing.

To simplify the design, and make it compatible with VGA, we created modified forms of
the graphics logic and got rid of the PPU Clock altogether, meaning that our system also
has 4 clock domains - a 50MHz system clock (primarily used to drive the NIOS SoC), a
1.7MHz CPU clock, a 12MHz clock used for RAM blocks and controller interfacing,
but a 25.172 MHz graphics clock used for VGA. The latter 3 clocks are generated by a
second PLL contained in the NIOS SoC, though it should be noted that this was done
for no architectural reason - rather, Platform Designer automatically generates timing
constraints for PLLs. When manually instantiating the PLL, we ran into various timing
issues whenever a signal crossed from one clock domain to another, where at one point
we were struggling to diagnose our system’s (-5) slack for an unspecified logic block.

PPU
The original NES used a Ricoh 2C02 for its PPU. It was capable of rendering the NES’s
output video as 8px square tiles at either the NTSC 256x240 (224 visible) resolution at
60 FPS or the less common PAL standard. It cannot be overstated how difficult making
this portion of the project was - while we primarily encountered timing issues with the
previous sections (crossing clock domains, sampling issues, etc.), this part of the project
combined our prior timing concerns with what is inherently a difficult task to tackle
logically.

Though it would be possible to decompose this component in a number of ways, for the
sake of this document, we will cover it in 5 broad categories:

1. Memory
2. I/O

a. VRAM Bus
b. DMA (Direct Memory Access)



3. Background Fetching
a. Scrolling

4. Sprite Fetching
5. Rendering/Priority Outputs

This order is arbitrary - when developing the PPU, we regularly flitted between these
sections as necessary to incrementally prototype and test the system.

Memory
For any given pixel, the PPU needs to determine what color it should be based on data
from the game cartridge and the CPU’s instructions. It is far too inefficient to
individually address each and every pixel for every frame, so instead the NES
compartmentalizes its data into sets of sprites and background tiles, establishing strict
rules for determining the pattern and colors of each. Furthermore, rather than
generating RGB values and encoding those to composite, the NES directly generates
color in the composite format from 64 potential colors.

The most fundamental piece of this data is the palette register block, a 32-byte area of
VRAM, is used for storing up to 8 palettes - 4 for different background tiles, and 4 for
sprite tiles. Each byte stores a different color that can be rendered with the NTSC color
set. Unless the grayscale mode is configured, all software running on the NES reads what
color to output for a given pixel value from the palette.

Note that the palettes, which are normally implemented with RAM in an NES unit, are
instead implemented using registers in our system for the sake of prototyping
convenience and simplicity.

The astute reader can quickly discern that to index the palette and extract a color, one
requires a 5-bit address. The other memories exist to supply the necessary data to



assemble this address. Internally, palettes are accessed with the following memory map
(with respect to the rest of VRAM).

Address Purpose

$3F00 Universal background color

$3F01-$3F03 Background palette 0

$3F05-$3F07 Background palette 1

$3F09-$3F0B Background palette 2

$3F0D-$3F0F Background palette 3

$3F11-$3F13 Sprite palette 0

$3F15-$3F17 Sprite palette 1

$3F19-$3F1B Sprite palette 2

$3F1D-$3F1F Sprite palette 3
(source)

Note that for read/write access, the addresses 10, 14, 18, 1C are mirrored to 00, 04, etc.
Generally, the MSB of the palette address indicates whether one is indexing a sprite or
background palette, and the other four bits are supplied by other components in
VRAM.

Pattern Tables
The pattern tables, character RAM/ROM, or CHR RAM/ROM for short, is an 8KB
section of VRAM (abstracted as two 4KB sections) where all the tile data for the game is
stored. While most games use an 8KB ROM stored in the cartridge itself, some
games/ROMs will write to a 2KB block of internal NES VRAM during runtime, and
mirror its addressing across all 8 KB's worth of VRAM space. However, due to the
relative infrequency of this approach in NES titles, we’ve foregone implementing the
secondary behavior.

https://www.nesdev.org/wiki/PPU_palettes


Pattern Table Tile Encoding

Each 8 by 8 tile occupies 16 bytes in memory. Treating each set of 8 bytes as a separate
8x8 matrix, concatenating any given bit in the second set of 8 bytes with the
corresponding bit in the first set will yield a 2-bit number, representing the color of that
specific pixel in the tile. Using this encoding, the pattern table is able to use 16 bytes to
encode a tile with up to 4 different colors - a good example being the multicolor “A”
above. This 2-bit sequence is used as the two LSBs to index the palette registers. The
other 3 bits are encoded in the other two memory sections.

It should be noted that a value of “0” does not represent an opaque color, but rather
transparency. This becomes pertinent when render priority between sprites and
background is discussed later.

Sidebar: For execution purposes, up to 8KB of CHROM is extracted from the relevant NES
ROM and initialized at startup.

Nametables
The nametables are two 1KB sections of VRAM used to store information about what
pattern should be displayed by each tile of the background. Each name table is
partitioned into two sections - x3C0 bytes are used to describe the tile number in the
pattern tables corresponding to each of the 32x30  8px tiles on the screen. Byte 0



describes the upper leftmost tile of the screen, from which the rest of the bytes are laid
out in row-major order.

The remaining memory is referred to as an attribute table. This section of memory
stores the color palette information for every 4x4 set of tiles. If we look at these sets as a
scaled version of the nametables’ grid, the attribute table retains row-major order for
such an arrangement. Each byte can individually address the palette used for a 2 by 2 set
of tiles. According to the NESDev wiki, that data is encoded as follows:

Though it may sound redundant to have two separate nametables, many games that
involve “scrolling” across a level stitch together two screens and partially render each one
- this is done by copying 2 screens’ worth of data to the nametables, then selectively
choosing a start/end position in each one to simulate a continuously moving screen.
This behavior will be better discussed in the rendering section of this document.

But to summarize: For any given tile in the background, the name table stores what
pattern should be rendered, and the attribute table stores what background palette we
should use - this two-bit number comprises the middle two bits of our palette address.

Thus for any background tile, the palette address can be assembled as {1’b0,
(palette no.), (pattern data)}.

Nametable Mirroring
The two 1KB nametables are mirrored across 4 logical tables - though seemingly trivial,
this mirroring is the basis for how scrolling works on the NES. There are two common
mirroring schemes used by games (without attaching additional CHR ROM in the
cartridge):



Horizontal Mirroring Vertical Mirroring

In I/O, there is a register that configures the “base nametable” - its two-bit address refers
to the logical nametables in this grid.

Sprite/Object Attribute Memory
Whereas background tiles can be stored as an array in row-major order, sprites are
constantly moving, require different render orientations, and more independently
accessible fine-grain control. Thus the NES has a 256-byte section of memory referred to
as the OAM. This block stores 4 bytes’ worth of data for up to 64 different sprites. Data
is encoded as follows for each sprite:

Byte 1 Topmost Y position

Byte 2 Tile number (in pattern table)

Byte 3 Attributes: render priority, horizontal flip, vertical flip, palette

Byte 4 Leftmost X position

The byte 3 palette is used to index palette registers in a similar fashion to how it’s done
with nametables, but the MSB changes to 1’b1 in order to access sprite palettes.

While the NES technically supports 8x16 sprites, to simplify the prototyping of this
project we have opted to only support 8x8 sprites. However, this is more than enough
for most earlier NES games - Donkey Kong, Super Mario Bros. Ice Climber, Pacman,



and more games that we supported at the time of demoing this project all only require
8x8 sprites.

That should offer a “brief” overview of where pattern and render data is stored in the
PPU. The coming PPU sections all in some way or another depend on interaction with
these memories, thus it is best to retain a working knowledge of what they are, and how
data is encoded.

At an architectural level, all of the RAM-based memories are implemented using
dual-port M9K RAM blocks. While the original NES used single-port RAM, with our
current experience it seemed unreasonable to design arbitration logic between
commands originating from the VGA rendering and CPU accesses. Dual-port RAM
allowed for a relatively elegant way to discretize these accesses while retaining memory
parity.

I/O
As alluded to in the CPU memory map, the PPU is interfaced via 9 different registers
(including DMA trigger). Each register has complex internal behaviors that, if fully
documented, would stretch this report to the length of the NESDev wiki. For
understanding purposes, we will briefly describe some registers at a high level, then
separately discuss the VRAM bus and DMA.

It should be noted that internally, these registers are not actually being accessed by the
CPU - rather we have a separate bus_out register that is used to buffer requested
read data, and unified address/data ports (as opposed to creating separate entries in the
primary bus for each element). Write data is directly passed to the relevant
register/RAM block. Through experimentation, we found that this approach produced
fewer behavioral and timing issues.



● x2000: Control Register: Write-Only Access
Enables/configures various internal behaviors including NMI suppression,
background pattern table address, sprite pattern table address, and base name
table for background rendering.

● x2001:  Mask Register: Write-Only Access
Controls various render settings - enabling background/sprite rendering, whether
to render background/sprites in the first 8 pixels (first tile), and to render opaque
backgrounds on top of sprites or vice versa.

● x2002: Status Register: Read-Only Access
Generally, the game running will use this register to determine if the PPU is in a
VBlank period and if Sprite0 Hit has occurred (this event is better documented
in the sprite rendering section). There are some other buggy behaviors
implemented in the original NES, but for the games we are running they are
irrelevant.

When this register is read from, it clears the VBlank flag.
● x2003: OAM Address: Write Access

The address stored in this register by the CPU is used to index OAM.
● x2004: OAM Data: Read/Write Access

A read/write to this register performs a read/write to the memory address stored
in OAM Address. In our system, this register actually doesn’t exist - but if a
read/write is requested from the corresponding address, we pipe input data to the
OAM block and buffer any relevant output data into bus_out. On a
read/write to this register, the OAM Address register is incremented.

Note that very few games interface via this register - OAM generally needs to be
written to in large quantities during vblank, and this approach  would take too
long (4 cycles per write in a contiguous block). Instead, DMA is regularly used.

● x2005: Scroll Position: Write x2



This register is 16 bits internally - on our 8-bit system, it requires two writes to
fully populate. This register specifies the X/Y offset when scrolling the
background, where X/Y are defined from 0-255 or 0-239 respectively. Scrolling is
a topic we will cover in more detail later in this document.

All the registers mentioned above are clocked at the CPU clock, while one port of the
OAM RAM is clocked at the 12MHz RAM clock.

VRAM Bus
Due to the large amount of memory stored in the PPU (even excluding OAM), directly
addressing it with the CPU is infeasible (when you consider the size of the rest of the
CPU’s memory map already). Instead, the PPU has its own internal VRAM bus that
can be interfaced via registers x2006 (16-bit address, like x2003) and x2007 (read/write
access like x2004).  Though it should be noted that, like with the OAM connection,
there is no literal 2007 register - rather, a series of comparators and muxes are used to
generate appropriate write-enable signals and an input to the output buffer (should the
2007 register be read). All RAM ports on this bus are clocked at 12MHz, and are
arranged in a memory map as follows:

Address range Description

$0000-$0FFF Pattern table 0

$1000-$1FFF Pattern table 1

$2000-$23FF Nametable 0

$2400-$27FF Nametable 1

$2800-$2BFF Nametable 2

$2C00-$2FFF Nametable 3

$3000-$3EFF Mirrors of $2000-$2EFF

$3F00-$3F1F Palette RAM indexes



$3F20-$3FFF Mirrors of $3F00-$3F1F
(source)

DMA
In every NES game, any kind of quickly/frequently moving game objects are always
modeled as sprites - generally these will be user objects and COM/enemies. While the
OAM registers detailed above offer one way to write this data between frames, it’s
inefficient - most of the time, games are trying to copy large batches of data at a time.
This is where DMA, or Direct Memory Access, comes into play.

Generally, the CPU will trigger a DMA operation by writing an 8-bit address (call it (D)
) to address x4014 on the primary data bus. When this write completes, the PPU will
pause the CPU and hijack the primary data bus. It then, over the course of 512 cycles,
copies 256 bytes from x(D)00 - x(D)FF on the CPU memory map to the OAM.

Internally, we made a separate module for DMA that hijacks both the CPU bus and the
VRAM bus. When DMA is triggered, this module outputs a “hijack” signal to both
buses, and pulls the CPU enable low (pausing it). The batch copy behavior is modeled
as a simple FSM (as shown below) tied to a 16-bit counter - this felt like the leanest
implementation at the time of writing. At any given time, the OAM address is simply
the counter value, and the CPU bus address is x(D) concatenated with the 16-bit
counter value. The OAM input is directly wired to the CPU bus’s output - thus the
amount of logic actually performed outside of cycle management is minimal.

https://www.nesdev.org/wiki/PPU_memory_map)


Overall, while not especially complex compared to the rest of our system, DMA
ultimately proves to be crucial, as it is the primary way that games populate sprite RAM
between frames.

Background Fetching
So far, we’ve talked about how data is prepared and encoded such that the system can
figure out what color each pixel should be - essentially CPU-facing logic and
abstraction. This section onwards discusses the VGA-facing logic, and how that data is
rendered.

The first problem we tackled was determining pertinent data to render the current
background tile. Based on the memory components we knew the NES contained, our
approach could be decomposed into 4 main steps:

1. Index name tables
2. Index attribute tables
3. Take name table output, index first set of pattern data
4. Take name table output, index second set of pattern data

Since we were dealing with RAM for all of these pieces of information, there would
need to be some kind of wait state before each read operation to allow the output to
propagate. Thus in total, we would need a minimum of 8 clock cycles to latch all the
necessary data to render a tile. On the original NES, this worked out very nicely during
visible scanlines - the data for the next tile could be fetched while rendering the current
one.

In our system, we needed some way of tracking state to know which operation to
perform at any given time, and what row/column to fetch data for. Rather than
manually tracking state with an FSM and counters (as the NES did), we used the
DrawX and DrawY counters of the supplied VGA controller to keep track of the
current pixel position, and used the DrawX value as a form of horizontal state. This
abstracted away any state logic on our end, and reduced the number of failure points.



Our VGA controller renders at double the NES resolution - as such, we still fetched all
the necessary data in the first 8 pixels of each tile, but only latched that data to the render
registers at the end of the 16th pixel of every block.

Since we decided not to use an incrementing counter, we needed some other way of
keeping track of what indices to plug into the name tables. Considering we were using
the same VGA controller, we chose to modify our Lab 7 prefetch logic slightly - by
dividing the DrawX value by the tile width (16 in this case) and retaining our current Y
position, we could simply increment the tile coordinates to find “newDrawX” and
“newDrawY”. These incremented coordinates would allow us to fetch the next 8 bits’
worth of data per the NES resolution - as long as we double-rendered each pixel, it
would look fine on VGA. The main complication this produced was that each row had
to essentially be rendered twice. Our workaround was dividing NewDrawY by two to
know what scanline we were on from the NES’s perspective. This logic allowed us to
convert from a 512x480 pixel map to a 32x240 virtual grid that was more in line with
the NES’s memory architecture. Simply concatenating these coordinates {Y,X} was
sufficient to produce an address for the nametable. Since the attribute table was a version
of the name table but with 4x4 tiles, reducing the address to {Y/4, X/4} was sufficient to
produce the second address.

From there, indexing the pattern tables was significantly easier - given the tile number,
we 3 least significant bits of the divided NewDrawY coordinate to figure out which of
the lines in the tile we were rendering. Given the pattern table scheme, making reads to
{(TILE NO.), 1’b0, (NewDrawY[2:0])} and {(TILE NO.), 1’b0, (NewDrawY[2:0])}
was sufficient. At this point, we have all the data loaded to determine background colors
for the next 8 NES pixels (16 VGA pixels) - whenever DrawY hits a 16th pixel, the
pattern data and attribute data is latched.



Scrolling
Most games require different screens and background data as the user moves from
top-to-bottom or left-to-right. To be able to render different X/Y positions without
having to overwrite full nametables just to move a single block forward, the NES renders
frames by using partial data from each nametable. In short, stitching together a frame
from a larger overall screen. This effect is well-illustrated by this animation that we
found on the NESDev wiki.

The X/Y scroll offset are provided by the scroll register we alluded to in the I/O section -
the first 8 bits act as an X pixel offset, and the second 8 bits act as Y pixel offset. By
treating these as an offset into a larger “mega-frame” produced by the logical nametable
arrangement mentioned in the memory section, we can then index nametables and
attribute tables as necessary to fetch a contiguous 256x240p background using that
offset as the top-left-most point of the frame.

While scrolling effects can be produced by editing nametable data between frames, this
produces a jittery output that would update the edge block by block - imagine if instead
of smoothly moving to the right, Super Mario Bros. had a new block pop in at random
frames? Thus the NES has to not only be able  index data with an offset, it also has to
update the on-screen blocks on 8-pixel boundaries of the translated pixel coordinates
rather than the render coordinates. Vertical scrolling is rather simple, as you simply add
the necessary vertical offset to the Y position at the beginning of each scanline, and it’s
consistent - the horizontal bounds of nametable fetching remain the same. However the
horizontal offset can change these boundaries, and at the time of writing we haven’t
implemented a stable version of this logic. For now, we simply adapted our non-scrolling
logic (documented above) and changed our comb block’s RAM fetching triggers to be
based on a translated X coordinate rather than the render X coordinate. This works for
most of the screen, but the second column of the frame tends to be a bit buggy.

https://www.nesdev.org/wiki/File:NTS_scrolling_seam.gif


Sprite Fetching
Unlike nametables, where the appropriate memory address to index can be derived from
the render/scroll coordinates alone, there is no direct mapping between screen position
and what sprite to render - rather it’s the inverse. Thus, to render sprites, we need to
fetch the necessary data on the previous scanline, then assemble the next scanline’s sprite
attributes/data on the current scanline. To do so, we need to do two things: make a
linear scan of the OAM to determine valid sprites, and fetch the corresponding data out
of nametables.

Sprite fetching takes too long to do during the horizontal blanking period alone, and the
pattern table interface is consumed by the background rendering logic. Thus we
segment it into two steps: we assemble a list of up to 8 sprites on the next scanline from
OAM during the visible rendering period, then once the pattern table bus has been freed
in HBlank, we fetch the corresponding lines of the sprite itself.

Cutting ahead a bit, pattern fetching once the sprite data is aggregated isn’t inherently
difficult - we fetch data over a period of 32 VGA clock cycles in VBlank, using 4 cycles
per sprite. The first two cycles latch the X position/attributes of the fetched sprite
memory and the MSBs of the pattern data to sprite output unit registers, and the second
two cycles latch the LSBs of the pattern data. This is a similar approach to the
“pixel-based state” approach we took with the background fetching. However, fetching
data from sprite OAM was not something we were able to simplify in a similar manner.
Thus instead, we created an FSM to perform a linear scan on the OAM.  This FSM is
neatly modeled in the diagram below.  While fetching data from the OAM,  we cannot
directly write to the sprite data cache - the NES would be using it to well… render
sprites. Instead, we have another set of cached sprite data, called “secondary OAM”,
declared as a 32-byte register file. When the FSM “latches” data, it does so in the
secondary OAM.



We trigger this FSM at the first pixel of the visible region, beginning our search at the
current position of OAMAddr (latching this as the initialization value of our scan
address). The FSM continues scanning the region of sprites until either we have filled
our secondary OAM completely, or the scan OAM address is too high to successfully
fetch a contiguous 4-byte block from OAM. The reasoning for this should be implicit
from the section above about data encoding in sprite OAM.

At the end of the visible region of the visible scanlines, the temp sprite counter (number
of sprites fetched), X coordinate of each sprite, and Attribute byte of each sprite are all
copied to appropriate locations in the secondary OAM. The Y coordinates and tile
numbers (first two bytes of each latched 4 byte block) are used in a comb block to
produce the appropriate addresses for pattern table fetching. Pattern table fetching is
done via the pixel-state method mentioned earlier. Through this process, the sprite
output unit memory (another 32-byte register block) is populated with data.



Rendering/Priority Outputs
Suppose that by this point, all the necessary background and sprite data has been
fetched. Even with all the pattern data and palette data fetched, what color should the
PPU render at each position? Should it be from the background pattern, or the PPU
pattern? What if there isn’t a valid pixel at that position? This logic is all handled by a set
of priority muxes.

The first priority mux exists to determine sprite priority - it determines the sprite to use
and outputs appropriate color and attribute data. Generally, sprites with a lower index
in the OAM should be given priority over other sprites. Since we aggregate secondary
OAM/sprite output unit memory with a linear scan, it is already in priority order - thus
simply finding the first valid sprite in our output unit memory (OUM?) is sufficient.
Considering that for every sprite in our OUM, there is a byte declaring its X position, a
naive implementation of this logic would be to use a set of comparators and give the first
sprite with an X position (SpriteX) where the render pixel’s X position (non-translated)
is between SpriteX and SpriteX+7 (inclusive). However, this fails to take into account
the fact that the NES treated pixels in the pattern data with a value of 0 as transparent.
Thus, the priority condition is adjusted to reflect the first pixel in range with a non-zero
pixel value. The comb block synthesizing this priority logic outputs the relevant sprite’s
attribute data, and two bits from the pattern data (essentially a two-bit number)
describing the color of the current pixel in the sprite. Before being passed into the next
mux, pattern data and attribute data is used to index the palette registers, and find the
final VGA-compatible (12-bit) color that would be outputted should the sprite be
rendered.

From this point, the PPU must determine render priority between the sprite data and
background data. Assuming that the background obeys the same 0-pattern transparency
rule and that there could potentially be no valid sprites, there are 4 cases to consider. If
only one of the potential outputs (BG vs Sprite) has a nonzero pattern value for the
current pixel, then that one should be selected by default. If neither has an opaque



pattern, then the universal background color, stored in palette register 0, is rendered. If
both are opaque, then there is a bit in the sprite’s attribute byte describing whether to
give it priority over the background or not - this is used as the priority condition.

Disclaimer
There are quite a few intricacies in this document ignored, such as mask conditions, the
sprite 0 hit flag, etc. However if we were to fully document all of these things, this
document would easily cross 50-60 pages, even with this diluted version of the NES.
This goes to show how truly sophisticated of an SoC the NES was. For sake of (relative)
concision, many of these intricacies were omitted. For those curious in the full extent of
our design process, a list of resources have been provided at the end of this document - it
encompasses every document we used to design our system.

Software Description
Our software component for this project consisted mainly of modifying Lab 6 code for
additional PIO blocks. The implemented functions of Maxreg_wr, Maxreg_read,
Maxbytes_wr, and Maxbytes_read remain in use for SPI protocols. However, the main.c
file has been updated to support 3-key rollover from keyboard input. This requires the
use of three separate setKeycode function calls, each addressing a separate PIO. To scale
up in the future and support an ideal 16-key rollover, we would, adhering to the logic
thus far, create another 10 PIOs and have 10 more function calls in main.c.

Debugging and Testbenching
Generally, the edge case for being able to test a design with simulations and testbenches
is that it is either primarily graphical (VGA output) or involves a great deal of RAM
logic. In our case, both were true - until the point that our background rendering was
working, we primarily debugged using the onboard hex displays to show important
information like the PC and OAM address. Once the background rendering worked,
however, we would pass our debug data to the background renderer as a pattern table
index - as shown below, this allowed us to graphically see how certain conditions were



changing throughout a single frame. When debugging our system, a majority of bugs
were purely due to timing issues or mismatches with the timing requirements of the
original NES (and what the games we ran were expecting). It was more efficient for us to
procedurally test these timing compatibilities by running a game and monitoring
internal state, rather than creating our own analogous test in assembly - both from a
time-cost and stimulus standpoint.

Displaying sprite data on each scanline via the background renderer

Design Resources and Statistics



LUT DSP MEM FLIP-FLOP

7314 0 373,888 3591

Frequency Static Power Dynamic Power Total Power

151.42 MHz 102.42 mW 0.71 mW 112.45 mW

Conclusion
Our expectation going into this project was to create a minimal NES SoC capable of
playing Donkey Kong by the time of our demo, with the potential to expand
functionality in the future - we believe we’ve more than exceeded that goal. At the time
of writing, our NaES is capable of playing Ice Climber, Pacman, and Donkey Kong
without any issues - we’re sure there are other games that can be played successfully as
well, we just haven’t tested too many yet. Super Mario Bros. is able to play, albeit with a
slight rendering bug.

Due to proximity to the deadline and other finals, the scrolling implementation we
made was a bit buggy. We’ve noticed that when games attempt to scroll horizontally (e.g
Mario), the second block of each scanline is a copy of the first column. We were not able
to debug this prior to demo, but do have some ideas on how to improve the scrolling
logic to eliminate this issue. While there are some issues in other games - noticeable
examples including flickering of the status bar in Super Mario Bros. and significant
screen tearing in Kung Fu - we have been able to attribute these issues to the fact that
our logic is based on a VGA clock at a higher resolution, rather than the intended NTSC
clock. A possible solution for this would be to directly render frames in composite, then
create a discrete module to adapt a composite frame buffer to VGA. The immediate
concern with doing this is screen tearing - however if we were to make this change, our
NES would likely become more cycle-accurate, allowing for smoother emulation of



many games. Luckily, most of our PPU render logic is designed to be compatible with
the original NES frame timings, and as such would require minimal modification.

Though not exactly a bug, we noticed during our demo with Prof. Cheng that he was
having trouble making fast movements when playing Super Mario Bros. due to rollover
limitations. As mentioned throughout this document, rollover is something that we
would like to extend as soon as possible - though now it seems to be more critical to user
experience than we initially thought.

Outside of just debugging issues with the NES, we believe that there are many ways for
us to viably extend the behavior of NaES over the summer. A goal that could be quickly
achieved might be to support ROM memory mappers (MMCs). In actual NES
cartridges, these mappers allowed games to internally switch between different memory
banks, allowing for larger and more complex games. Considering that memory
availability tends to be the main setback with implementing such games and that our
M9K usage is only at 28%, we could easily instantiate more ROM banks in the top-level
module to support mapped games.

Another improvement would be implementing the audio processor (APU) - many
games in the NES era were characterized by their music, and we think this would greatly
improve user experience. However the APU requires more memory priority handling
and bus hijacking for the delta modulation channels and sample loading - this would
increase the complexity of our bus design by a non-trivial amount. So while this would
be a long-term goal, we can’t see ourselves reliably completing this subsystem soon.

Overall, we found this project to be greatly educational regarding digital design and
working with FPGAs. While we didn’t work with C code or Platform Designer as much
as some of the other projects we saw, there was much more work put into reliably
crossing clock domains, bus architecture, FSM design, etc. - skills that are all essential to
pursue a successful career in hardware design. Furthermore, we enjoyed our project - it



was exhilarating to see Donkey Kong pop up on the screen for the first time in black-and
white, to see Mario  run around (even when decapitated and inverted), and to finally see
people enjoying our system at the project showcase. As an experience, even as infuriating
as it was to be “flying blind” while debugging, we think that creating NaES will be an
essential experience in our future careers and pursuits within the field of digital
hardware design.
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